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@ What's a Metered Parking Function

e Not the same as multiple cars parking in the same spot.

e Time allowed in the parking spot is more important than you
think.

@ 1-Metered Parking Functions

@ Continued Fractions?
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Parking Functions

Let [n] = {1,2,...,n}.

Given a = (a1, a2,...,an) € [n]". We say that « is a preference
vector, in which cars park under the parking rule,

o Car i/ parks in its preferred spot aj, or

@ if the preferred spot is taken, it goes to the next available
spot, otherwise it leaves the parking lot.

If every car can park, then we say parking function of length n
and denote the set of parking functions of length n as PF,
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Parking Functions

Let [n] = {1,2,...,n}.

Definition

Given a = (a1, a2,...,an) € [n]". We say that « is a preference
vector, in which cars park under the parking rule,
o Car / parks in its preferred spot a;, or
@ if the preferred spot is taken, it goes to the next available
spot, otherwise it leaves the parking lot.

If every car can park, then we say parking function of length n
and denote the set of parking functions of length n as PF,

Alternatively, « is a parking function if and only if
ol = (a},a,...,a),) the weakly increasing arrangement of a
satisfies for each i € [n],

a; <.
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(m, n)-Parking Functions

What if the number of cars and the number of spots are not the
same?

Definition

Let m, n € N, where m denotes the number of cars and n denotes
the number of parking spots. If « € [n]™ parks all cars under the
standard parking rules, we say « is a (m, n)-parking function, and
we denote the set of (m, n)-Parking functions as PF, ,
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(m, n)-Parking Functions

What if the number of cars and the number of spots are not the
same?

Definition

Let m, n € N, where m denotes the number of cars and n denotes
the number of parking spots. If « € [n]™ parks all cars under the
standard parking rules, we say « is a (m, n)-parking function, and
we denote the set of (m, n)-Parking functions as PF, ,

Alternatively, « is an (m, n)-parking function if and only if,

Hke[ml:a <i}[>m—n+i
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@ The cardinality of the parking functions of length n is,

|PF,| = pf, = (n41)"L.

@ When 1 < m < n, the cardinality of the (m, n)-parking
functions is

|PFm7”’ = pfm,n = (n —m+ 1)(” + 1)m71
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“"What are some variations of
parking functions we can think
about?”

- Pamela
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“"What are some variations of
parking functions we can think
about?”

- Pamela

“What if we put meters on the
spots and cars have to leave?”
- Kim
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“What are some variations of
parking functions we can think
about?”

- Pamela

“What if we put meters on the
spots and cars have to leave?”
- Kim

“That’s sick!”
- Matt
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Metered Parking Functions.

Now assume that when a car parks, they can only stay parked for a
set time allotted.
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Metered Parking Functions.

Now assume that when a car parks, they can only stay parked for a
set time allotted.

Definition (Metered Parking Functions)

Fix a positive integer t, and consider m cars parking in n spots.
Cars park under the standard parking rule, except now after car j
parks, car j — t (if it exists) will leave as the meter has ran out. If
the preference list o € [n]™ results in all cars parking, we say « is a
t-metered parking function. We denote the set of t-metered
parking functions as MPF, ,(t). Additionally we denote the
cardinality of the sets of metered parking functions as

|MPFm,n(t)’ = mpfm,n(t)
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Metered Parking Functions.

Now assume that when a car parks, they can only stay parked for a
set time allotted.

Definition (Metered Parking Functions)

Fix a positive integer t, and consider m cars parking in n spots.
Cars park under the standard parking rule, except now after car j
parks, car j — t (if it exists) will leave as the meter has ran out. If
the preference list o € [n]™ results in all cars parking, we say « is a
t-metered parking function. We denote the set of t-metered
parking functions as MPF, ,(t). Additionally we denote the
cardinality of the sets of metered parking functions as

|MPFm,n(t)’ = mpfm,n(t)

“It takes an hour to find a parking spot”

Matt McClinton Metered Parking Functions



Consider a € (1,1,1) € [2]3 with t = 1

HOUR
1 2 1
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Consider a € (1,1,1) € [2]® with t = 1.
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Consider a € (1,1,1) € [2]® with t = 1.

% %
HOUR
2 1 freee
c ous
%
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Consider a € (1,1,1) € [2]® with t = 1.

1 HOUR
PARKING
CAPRICIOUS
DRIVEF

Car 2 parks:
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Consider a € (1,1,1) € [2]® with t = 1.

o
o £

20 o 8o Pa

bo

1

1 HOUR
PARKING
CAPRICIOUS
DRIVEF
ONI

Car 1 parks:

Car 2 parks:

Popol

Car 3 parks:

Popo-po
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e )
Car 1 leaves: ° °
@ [—— @
1 2

Note: When car 1 parked, that spot became available to car 3.
In general for any t, when car i parks, the first car that can park in
that spot is car i + t + 1.
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Pop Quiz!

m cars n spots t time

@ Let m,n € N, such that m < n, and t > m — 1. Then

MPF (1) =
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Pop Quiz!

m cars n spots t time

@ Let m,n € N, such that m < n, and t > m — 1. Then

MPF . (t) = PF pm.p.
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Pop Quiz!

m cars n spots t time

@ Let m,n € N, such that m < n, and t > m — 1. Then

MPF . (t) = PF pm.p.

@ Let m, n € N be arbitrary, and set t = 0. Then

MPF,, »(0) =
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Pop Quiz!

m cars n spots t time

@ Let m,n € N, such that m < n, and t > m — 1. Then

MPF . (t) = PF pm.p.

@ Let m, n € N be arbitrary, and set t = 0. Then

MPF,.»(0) = [n]™.
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Pop Quiz!

m cars n spots t time

@ Let m,n € N, such that m < n, and t > m — 1. Then

MPF . (t) = PF pm.p.

@ Let m, n € N be arbitrary, and set t = 0. Then

MPF,.»(0) = [n]™.

@ Let m,n € N such that m > nand t > n. Then

MPF, (t) =
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Pop Quiz!

m cars n spots t time

@ Let m,n € N, such that m < n, and t > m — 1. Then

MPF . (t) = PF pm.p.

@ Let m, n € N be arbitrary, and set t = 0. Then

MPF,.»(0) = [n]™.

@ Let m,n € N such that m > nand t > n. Then

MPF . n(t) = 0.
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A Bold Claim

Claim: If & € MPF, (), then o € MPF, o(t') for any ¢’ < t.
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Consider the tuple « = (3,3,3,3,4,5,6) with t = 2.
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Consider the tuple « = (3,3,3,3,4,5,6) with t = 2.

1 (&) (o]
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Consider the tuple « = (3,3,3,3,4,5,6) with t = 2.

a

(6) (6]
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Consider the tuple « = (3,3,3,3,4,5,6) with t = 2.

a

Ca () C3
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Consider the tuple « = (3,3,3,3,4,5,6) with t = 2.

a @ a3

Cy Cs Co
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Consider the tuple a = (3,3,3,3,4,5,6) with t = 2.

Ca

C1 () c3

Cs Ce (or
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Consider the tuple « = (3,3,3,3,4,5,6) with t = 1.

1 (&)
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Consider the tuple « = (3,3,3,3,4,5,6) with t = 1.

a @

C3 Cy
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Consider the tuple a = (3,3,3,3,4,5,6) with t = 1.

(&]

a (%)

Cy Cy
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Consider the tuple a = (3,3,3,3,4,5,6) with t = 1.

c3 C4

a (%)

Cy Co
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Consider the tuple o = (3,3,3,3,4,5,6) with t =1. X

C3 C4

G @ G5

C6 (or4
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Consider the tuple o = (3,3,3,3,4,5,6) with t =1. X

C3 C4

G @ G5

Ce (674

(

Conjecture: If t; < t,, then mpfm’,,(tg) < mpfmm(tl).
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MPF, (1)

For m = n,

MPF25(1) = {(1,1), (1,2), (2,1)},
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MPF, (1)

For m = n,

MPF22(1) = {(1,1), (1,2), (2,1)},
and also

P

1 3
2 2
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MPF, (1)

For m = n,

MPF35(1) = {(1,1), (1,2), (2,1)},

and also

MPF33(1) =

(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1)
(1,3,2), (2,1,1), (2,1,2), (2,1,3), (2,2,1), (2,2,2), (2,3,1)
(2,3,2), (3,1,1), (3,1,2), (3,1,3), (3,2,1), (3,2,2), (3,2,3)
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MPF, (1)

For m = n,

MPF35(1) = {(1,1), (1,2), (2,1)},

and also

(17171)? (1’ 1’2)7 (1’ 173)’ (1?27 1)7 (1’2’2)7 (17273)7 (1737 1)
(1,3,2), (2,1,1), (2,1,2), (2,1,3), (2,2,1), (2,2,2), (2,3,1)
(2,3,2), (3,1,1), (3,1,2), (3,1,3), (3,2,1), (3,2,2), (3,2,3)
and also | 5
3— T =
3—3 8
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MPF, (1)

For m = n,
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MPF, (1)

For m = n,

mpfy 4(1) = 209 and also

L _ 209
4—4% 56
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Your Sequence is...

A097690 Numerators of the continued fraction n-1/(n-1/...) [n N

times].
1, 3, 21, 209, 2640, 40391, 726103, 15003009, 350382231,
9127651499, 262424759520, 8254109243953, 281944946167261,
10393834843080975, 411313439034311505,
17391182043967249409, 782469083251377707328

(list; graph; refs; listen; history: text; internal format)
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Continued Fractions?

Theorem (M., Harris, Daugherty, Klein)

For m < n, the number of 1—metered parking functions satisfies
the recursion

mpfm—i—l,n(l) =n: mpfm,n(l) - mpfm—l,n(l) (1)
where mpf; ,(1) = n and we use the convention that mpfy , = 1.

The recursion defined in Equation (1) with m = n corresponds to
the OEIS entry A0097690, which is the numerator of the continued
fraction,

which terminates after n steps.
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Proof of Theorem

m cars < n spots

o Consider the set MPF 11 ,(1).
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Proof of Theorem

m cars < n spots

o Consider the set MPF 11 ,(1).

@ Every o € MPF .11 4(1) is some element o € MPF, (1)
with an entry appended to the end.
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Proof of Theorem

m cars < n spots

o Consider the set MPF 11 ,(1).

@ Every o € MPF .11 4(1) is some element o € MPF, (1)
with an entry appended to the end.

@ How can car cp41 fail to park? It fails to park if car ¢, is
parked in spot n and car ¢p4+1 wants spot n.
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Proof of Theorem

m cars < n spots

o Consider the set MPF 11 ,(1).

@ Every o € MPF .11 4(1) is some element o € MPF, (1)
with an entry appended to the end.

@ How can car cp41 fail to park? It fails to park if car ¢, is
parked in spot n and car ¢p4+1 wants spot n.

@ Which means that,
MPF 141,0(1)

= U <{a € MPF, »(1) with an i to appended to the end}
i=1

— {a € MPFp,.5(1) where car m parks in spot n}) (2)
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Proof of Theorem

m cars < n spots

e If i # j, then appending an i to every a € MPF, 5(1) is
disjoint from the set of & € MPF, ,(1) with a j appended to
the end.
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Proof of Theorem

m cars < n spots

e If i # j, then appending an i to every a € MPF, 5(1) is
disjoint from the set of & € MPF, ,(1) with a j appended to
the end.

@ This implies that

mpfm—i—l,n(l)
= n-mpf,, (1) — #{a € MPF, ,(1) : car m parks in spot n.}
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Proof of Theorem

m cars < n spots

e If i # j, then appending an i to every a € MPF, 5(1) is
disjoint from the set of & € MPF, ,(1) with a j appended to
the end.

@ This implies that

mpfm—i—l,n(l)
= n-mpf,, (1) — #{a € MPF, ,(1) : car m parks in spot n.}

o #{a € MPF, (1) : car m parks in spot n} = mpf,,_; (1)
(see Lemma 3).
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Proof of Theorem

m cars < n spots

e If i # j, then appending an i to every a € MPF, 5(1) is
disjoint from the set of & € MPF, ,(1) with a j appended to
the end.

@ This implies that

mpfm—i—l,n(l)
= n-mpf,, (1) — #{a € MPF, ,(1) : car m parks in spot n.}

o #{a € MPF, (1) : car m parks in spot n} = mpf,,_; (1)
(see Lemma 3).
@ Therefore,

mpferl,n(l) =n- mpfm,n(l) - mpfmfl,n(l)
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Proof of Theorem

m cars < n spots

e If i # j, then appending an i to every a € MPF, 5(1) is
disjoint from the set of & € MPF, ,(1) with a j appended to
the end.

@ This implies that

mpfm—i—l,n(l)
= n-mpf,, (1) — #{a € MPF, ,(1) : car m parks in spot n.}

o #{a € MPF, (1) : car m parks in spot n} = mpf,,_; (1)
(see Lemma 3).
@ Therefore,

mpferl,n(l) =n- mpfm,n(l) - mpfmfl,n(l)
L]



Summary of Paper

Formulas for the cardinalities of the following sets:
e MPF, (1)

o MPF,,(t)

MPF 1 .n(n—1) for k > 0.

e MPF,»(1)

MPF ., n(m — 2)
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Some Thoughts.

@ What if only some spots have meters?
o First k spots have a meter? Last k spots?

@ What if the meter time isn't the same for every spot?

@ Statistics on metered parking functions? Count runs, ascents,
descents?

@ Check out our open problems!

Figure: Link to the paper
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Clown Functions?

From Parking Functions: Choose your own Adventure (Harris et.

al),

Definition (Clown Functions)

Fix a positive integer d, and consider clowns filling into m cars,
where each car can seat d clowns. Clowns enter the cars under the
same standard parking rule, except for now we allow d clowns to
enter the car. If the preference list & € [n]™ results in all cars
parking, then we say « is a Clown Function of length m, and we
denote the set of clown functions as CF,(d)
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Clown Functions?

From Parking Functions: Choose your own Adventure (Harris et.

al),
Definition (Clown Functions)

Fix a positive integer d, and consider clowns filling into m cars,
where each car can seat d clowns. Clowns enter the cars under the
same standard parking rule, except for now we allow d clowns to
enter the car. If the preference list & € [n]™ results in all cars
parking, then we say « is a Clown Function of length m, and we
denote the set of clown functions as CF,(d)

Note: This is not the same as metered parking functions!

] (3, 1,3) < MPF373(1), and (3, 1,3) ¢ CF3(1)
o (1,3,3) ¢ MPF33(2), and (1,3,3) € CF3(2)
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