Metered Parking Functions

Matt McClinton

AMS Central Sectional Special Session on Parking Functions October 18, 2025

The Team

Figure: Pamela E. Harris (UW Milwaukee), Spencer Daugherty (University of Colorado Boulder), Ian Klein (NC State)

Thanks Kim Harry!

Outline

- What's a Metered Parking Function
 - Not the same as multiple cars parking in the same spot.
 - Time allowed in the parking spot is more important than you think.
- 1-Metered Parking Functions
- Continued Fractions?

Parking Functions

Let
$$[n] = \{1, 2, \dots, n\}.$$

Definition

Given $\alpha = (a_1, a_2, \dots, a_n) \in [n]^n$. We say that α is a **preference vector**, in which cars park under the parking rule,

- Car i parks in its preferred spot a_i, or
- if the preferred spot is taken, it goes to the next available spot, otherwise it leaves the parking lot.

If every car can park, then we say **parking function of length** n and denote the set of parking functions of length n as PF_n

Parking Functions

Let
$$[n] = \{1, 2, \dots, n\}.$$

Definition

Given $\alpha = (a_1, a_2, \dots, a_n) \in [n]^n$. We say that α is a **preference vector**, in which cars park under the parking rule,

- Car i parks in its preferred spot a_i, or
- if the preferred spot is taken, it goes to the next available spot, otherwise it leaves the parking lot.

If every car can park, then we say **parking function of length** n and denote the set of parking functions of length n as PF_n

Alternatively, α is a parking function if and only if $\alpha^{\uparrow}=(a'_1,a'_2,\ldots,a'_n)$ the weakly increasing arrangement of α satisfies for each $i\in[n]$,

$$a_i' \leq i$$
.

(m, n)-Parking Functions

What if the number of cars and the number of spots are not the same?

Definition

Let $m, n \in \mathbb{N}$, where m denotes the number of cars and n denotes the number of parking spots. If $\alpha \in [n]^m$ parks all cars under the standard parking rules, we say α is a (m, n)-parking function, and we denote the set of (m, n)-Parking functions as $\mathsf{PF}_{m,n}$

(m, n)-Parking Functions

What if the number of cars and the number of spots are not the same?

Definition

Let $m, n \in \mathbb{N}$, where m denotes the number of cars and n denotes the number of parking spots. If $\alpha \in [n]^m$ parks all cars under the standard parking rules, we say α is a (m, n)-parking function, and we denote the set of (m, n)-Parking functions as $\mathsf{PF}_{m,n}$

Alternatively, α is an (m, n)-parking function if and only if,

$$|\{k \in [m] : a_k \le i\}| \ge m - n + i$$

Facts

• The cardinality of the parking functions of length n is,

$$|\mathsf{PF}_n| = \mathsf{pf}_n = (n+1)^{n-1}.$$

• When $1 \le m \le n$, the cardinality of the (m, n)-parking functions is

$$|\mathsf{PF}_{m,n}| = \mathsf{pf}_{m,n} = (n-m+1)(n+1)^{m-1}$$

Story Time

"What are some variations of parking functions we can think about?"

- Pamela

Story Time

"What are some variations of parking functions we can think about?"

- Pamela

"What if we put meters on the spots and cars have to leave?"

- Kim

Story Time

"What are some variations of parking functions we can think about?"

- Pamela

"What if we put meters on the spots and cars have to leave?"

- Kim

"That's sick!" - Matt

Metered Parking Functions.

Now assume that when a car parks, they can only stay parked for a set time allotted.

Metered Parking Functions.

Now assume that when a car parks, they can only stay parked for a set time allotted.

Definition (Metered Parking Functions)

Fix a positive integer t, and consider m cars parking in n spots. Cars park under the standard parking rule, except now after car j parks, car j-t (if it exists) will leave as the meter has ran out. If the preference list $\alpha \in [n]^m$ results in all cars parking, we say α is a t-metered parking function. We denote the set of t-metered parking functions as $\mathsf{MPF}_{m,n}(t)$. Additionally we denote the cardinality of the sets of metered parking functions as

$$|\mathsf{MPF}_{m,n}(t)| = \mathsf{mpf}_{m,n}(t)$$

Metered Parking Functions.

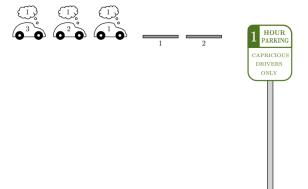
Now assume that when a car parks, they can only stay parked for a set time allotted.

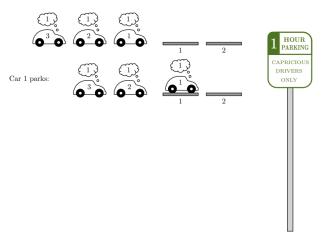
Definition (Metered Parking Functions)

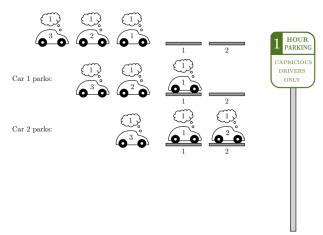
Fix a positive integer t, and consider m cars parking in n spots. Cars park under the standard parking rule, except now after car j parks, car j-t (if it exists) will leave as the meter has ran out. If the preference list $\alpha \in [n]^m$ results in all cars parking, we say α is a t-metered parking function. We denote the set of t-metered parking functions as $\mathsf{MPF}_{m,n}(t)$. Additionally we denote the cardinality of the sets of metered parking functions as

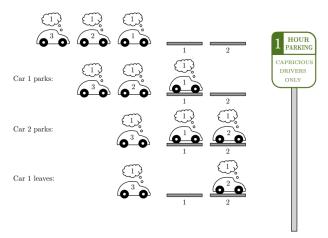
$$|\mathsf{MPF}_{m,n}(t)| = \mathsf{mpf}_{m,n}(t)$$

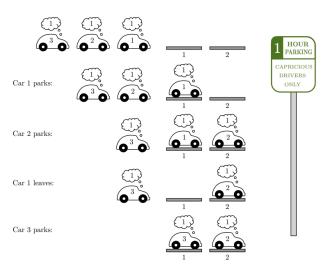
"It takes an hour to find a parking spot"











Note: When car 1 parked, that spot became available to car 3. In general for any t, when car i parks, the first car that can park in that spot is car i + t + 1.

m cars

n spots

t time

Example

• Let $m, n \in \mathbb{N}$, such that $m \leq n$, and $t \geq m-1$. Then

$$\mathsf{MPF}_{m,n}(t) =$$

m cars

n spots

t time

Example

• Let $m, n \in \mathbb{N}$, such that $m \leq n$, and $t \geq m-1$. Then

$$\mathsf{MPF}_{m,n}(t) = \mathsf{PF}_{m,n}.$$

m cars

n spots

t time

Example

• Let $m, n \in \mathbb{N}$, such that $m \leq n$, and $t \geq m-1$. Then

$$\mathsf{MPF}_{m,n}(t) = \mathsf{PF}_{m,n}.$$

• Let $m, n \in \mathbb{N}$ be arbitrary, and set t = 0. Then

$$\mathsf{MPF}_{m,n}(0) =$$

m cars n

n spots

t time

Example

• Let $m, n \in \mathbb{N}$, such that $m \leq n$, and $t \geq m-1$. Then

$$MPF_{m,n}(t) = PF_{m,n}$$
.

• Let $m, n \in \mathbb{N}$ be arbitrary, and set t = 0. Then

$$MPF_{m,n}(0) = [n]^m$$
.

m cars n spots

Example

• Let $m, n \in \mathbb{N}$, such that $m \leq n$, and $t \geq m-1$. Then

$$\mathsf{MPF}_{m,n}(t) = \mathsf{PF}_{m,n}.$$

• Let $m, n \in \mathbb{N}$ be arbitrary, and set t = 0. Then

$$MPF_{m,n}(0) = [n]^m$$
.

• Let $m, n \in \mathbb{N}$ such that m > n and $t \ge n$. Then

$$MPF_{m,n}(t) =$$

t time

m cars

n spots

t time

Example

• Let $m, n \in \mathbb{N}$, such that $m \leq n$, and $t \geq m-1$. Then

$$\mathsf{MPF}_{m,n}(t) = \mathsf{PF}_{m,n}.$$

• Let $m, n \in \mathbb{N}$ be arbitrary, and set t = 0. Then

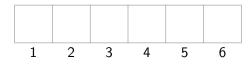
$$MPF_{m,n}(0) = [n]^m$$
.

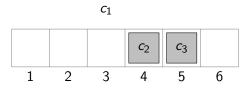
• Let $m, n \in \mathbb{N}$ such that m > n and $t \ge n$. Then

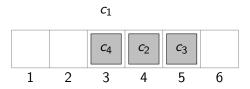
$$MPF_{m,n}(t) = \emptyset$$
.

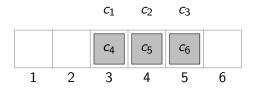
A Bold Claim

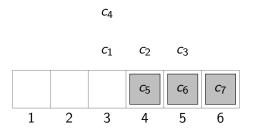
 $\underline{\mathsf{Claim}} \text{: } \mathsf{If } \alpha \in \mathsf{MPF}_{\mathit{m,n}}(t) \mathsf{, then } \alpha \in \mathsf{MPF}_{\mathit{m,n}}(t') \mathsf{ for any } t' < t.$



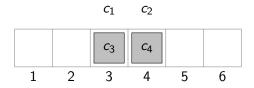


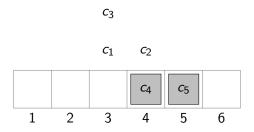






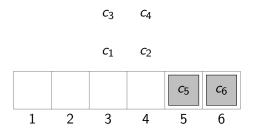






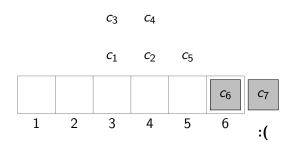
Example

Consider the tuple $\alpha = (3, 3, 3, 3, 4, 5, 6)$ with t = 1.



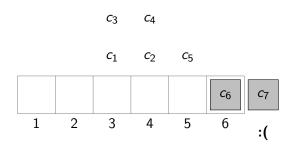
Example

Consider the tuple $\alpha = (3, 3, 3, 3, 4, 5, 6)$ with t = 1. **X**



Example

Consider the tuple $\alpha = (3, 3, 3, 3, 4, 5, 6)$ with t = 1. **X**



Conjecture: If $t_1 < t_2$, then $mpf_{m,n}(t_2) \le mpf_{m,n}(t_1)$.

$MPF_{n,n}(1)$

For m = n,

Example

$$\mathsf{MPF}_{2,2}(1) = \{(1,1),\ (1,2),\ (2,1)\},$$

For m = n,

Example

$$\mathsf{MPF}_{2,2}(1) = \{(1,1), \ (1,2), \ (2,1)\},\$$

and also

$$2 - \frac{1}{2} = \frac{3}{2}$$

For m=n,

Example

$$\mathsf{MPF}_{2,2}(1) = \{(1,1), \ (1,2), \ (2,1)\},\$$

and also

$$2 - \frac{1}{2} = \frac{3}{2}$$

Example

$$\begin{aligned} \mathsf{MPF}_{3,3}(1) &= \\ \left\{ (1,1,1), \ (1,1,2), \ (1,1,3), \ (1,2,1), \ (1,2,2), \ (1,2,3), \ (1,3,1) \\ (1,3,2), \ (2,1,1), \ (2,1,2), \ (2,1,3), \ (2,2,1), \ (2,2,2), \ (2,3,1) \\ (2,3,2), \ (3,1,1), \ (3,1,2), \ (3,1,3), \ (3,2,1), \ (3,2,2), \ (3,2,3) \\ \end{aligned} \right\}$$

For m = n,

Example

$$\mathsf{MPF}_{2,2}(1) = \{(1,1), \ (1,2), \ (2,1)\},\$$

and also

$$2-\frac{1}{2}=\frac{3}{2}$$

Example

$$MPF_{3,3}(1) =$$

$$\begin{cases} (1,1,1), & (1,1,2), & (1,1,3), & (1,2,1), & (1,2,2), & (1,2,3), & (1,3,1) \\ (1,3,2), & (2,1,1), & (2,1,2), & (2,1,3), & (2,2,1), & (2,2,2), & (2,3,1) \\ (2,3,2), & (3,1,1), & (3,1,2), & (3,1,3), & (3,2,1), & (3,2,2), & (3,2,3) \end{cases}$$

and also

$$3 - \frac{1}{3 - \frac{1}{2}} = \frac{21}{8}$$

For m = n,

Example

 ${\sf mpf_{4,4}(1)} = 209$

$MPF_{n,n}(1)$

For m = n,

Example

 $\mathsf{mpf}_{4,4}(1) = 209$ and also

$$4 - \frac{1}{4 - \frac{1}{4 - \frac{1}{4}}} = \frac{209}{56}$$

Your Sequence is...

A097690 Numerators of the continued fraction n-1/(n-1/...) [n times]. 1, 3, 21, 209, 2640, 40391, 726103, 15003009, 350382231, 9127651499, 262424759520, 8254109243953, 281944946167261, 10393834843080975, 411313439034311505, 17391182043967249409, 782469083251377707328

(list; graph; refs; listen; history; text; internal format)

Continued Fractions?

Theorem (M., Harris, Daugherty, Klein)

For $m \le n$, the number of 1-metered parking functions satisfies the recursion

$$mpf_{m+1,n}(1) = n \cdot mpf_{m,n}(1) - mpf_{m-1,n}(1)$$
 (1)

where $mpf_{1,n}(1) = n$ and we use the convention that $mpf_{0,n} = 1$.

The recursion defined in Equation (1) with m = n corresponds to the OEIS entry A0097690, which is the numerator of the continued fraction,

$$n-\frac{1}{n-\frac{1}{n-\frac{1}{n-\dots}}}$$

which terminates after n steps.

$$m \text{ cars } \leq n \text{ spots}$$

• Consider the set $MPF_{m+1,n}(1)$.

$$m ext{ cars } \leq n ext{ spots}$$

- Consider the set $MPF_{m+1,n}(1)$.
- Every $\alpha \in \mathsf{MPF}_{m+1,n}(1)$ is some element $\alpha' \in \mathsf{MPF}_{m,n}(1)$ with an entry appended to the end.

$$m \text{ cars } \leq n \text{ spots}$$

- Consider the set $MPF_{m+1,n}(1)$.
- Every $\alpha \in \mathsf{MPF}_{m+1,n}(1)$ is some element $\alpha' \in \mathsf{MPF}_{m,n}(1)$ with an entry appended to the end.
- How can car c_{m+1} fail to park? It fails to park if car c_m is parked in spot n and car c_{m+1} wants spot n.

$$m \text{ cars } \leq n \text{ spots}$$

- Consider the set $MPF_{m+1,n}(1)$.
- Every $\alpha \in \mathsf{MPF}_{m+1,n}(1)$ is some element $\alpha' \in \mathsf{MPF}_{m,n}(1)$ with an entry appended to the end.
- How can car c_{m+1} fail to park? It fails to park if car c_m is parked in spot n and car c_{m+1} wants spot n.
- Which means that,

$$\begin{aligned} \mathsf{MPF}_{m+1,n}(1) \\ &= \bigcup_{i=1}^n \Big(\{ \alpha \in \mathsf{MPF}_{m,n}(1) \text{ with an } i \text{ to appended to the end} \} \\ &- \{ \alpha \in \mathsf{MPF}_{m,n}(1) \text{ where car } m \text{ parks in spot } n \} \Big) \end{aligned} \tag{2}$$

$$m ext{ cars } \leq n ext{ spots}$$

• If $i \neq j$, then appending an i to every $\alpha \in \mathsf{MPF}_{m,n}(1)$ is disjoint from the set of $\alpha \in \mathsf{MPF}_{m,n}(1)$ with a j appended to the end.

$$m \text{ cars } \leq n \text{ spots}$$

- If $i \neq j$, then appending an i to every $\alpha \in \mathsf{MPF}_{m,n}(1)$ is disjoint from the set of $\alpha \in \mathsf{MPF}_{m,n}(1)$ with a j appended to the end.
- This implies that

```
\mathsf{mpf}_{m+1,n}(1)
= n \cdot \mathsf{mpf}_{m,n}(1) - \#\{\alpha \in \mathsf{MPF}_{m,n}(1) : \mathsf{car}\ m\ \mathsf{parks}\ \mathsf{in}\ \mathsf{spot}\ n.\}
```

$$m \text{ cars } \leq n \text{ spots}$$

- If $i \neq j$, then appending an i to every $\alpha \in \mathsf{MPF}_{m,n}(1)$ is disjoint from the set of $\alpha \in \mathsf{MPF}_{m,n}(1)$ with a j appended to the end.
- This implies that

$$\mathsf{mpf}_{m+1,n}(1)$$

$$= n \cdot \mathsf{mpf}_{m,n}(1) - \#\{\alpha \in \mathsf{MPF}_{m,n}(1) : \mathsf{car}\ m\ \mathsf{parks}\ \mathsf{in}\ \mathsf{spot}\ n.\}$$

• $\#\{\alpha \in \mathsf{MPF}_{m,n}(1) : \mathsf{car}\ m\ \mathsf{parks}\ \mathsf{in}\ \mathsf{spot}\ n\} = \mathsf{mpf}_{m-1,n}(1)$ (see Lemma 3).

$$m \text{ cars } \leq n \text{ spots}$$

- If $i \neq j$, then appending an i to every $\alpha \in \mathsf{MPF}_{m,n}(1)$ is disjoint from the set of $\alpha \in \mathsf{MPF}_{m,n}(1)$ with a j appended to the end.
- This implies that

$$\begin{split} & \mathsf{mpf}_{m+1,n}(1) \\ &= n \cdot \mathsf{mpf}_{m,n}(1) - \#\{\alpha \in \mathsf{MPF}_{m,n}(1) : \mathsf{car}\ m\ \mathsf{parks\ in\ spot}\ n.\} \end{split}$$

- $\#\{\alpha \in \mathsf{MPF}_{m,n}(1) : \mathsf{car}\ m\ \mathsf{parks}\ \mathsf{in}\ \mathsf{spot}\ n\} = \mathsf{mpf}_{m-1,n}(1)$ (see Lemma 3).
- Therefore,

$$\mathsf{mpf}_{m+1,n}(1) = n \cdot \mathsf{mpf}_{m,n}(1) - \mathsf{mpf}_{m-1,n}(1)$$

$$m \text{ cars } \leq n \text{ spots}$$

- If $i \neq j$, then appending an i to every $\alpha \in \mathsf{MPF}_{m,n}(1)$ is disjoint from the set of $\alpha \in \mathsf{MPF}_{m,n}(1)$ with a j appended to the end.
- This implies that

$$\mathsf{mpf}_{m+1,n}(1)$$

$$= n \cdot \mathsf{mpf}_{m,n}(1) - \#\{\alpha \in \mathsf{MPF}_{m,n}(1) : \mathsf{car}\ m\ \mathsf{parks}\ \mathsf{in}\ \mathsf{spot}\ n.\}$$

- $\#\{\alpha \in \mathsf{MPF}_{m,n}(1) : \mathsf{car}\ m\ \mathsf{parks}\ \mathsf{in}\ \mathsf{spot}\ n\} = \mathsf{mpf}_{m-1,n}(1)$ (see Lemma 3).
- Therefore,

$$\mathsf{mpf}_{m+1,n}(1) = n \cdot \mathsf{mpf}_{m,n}(1) - \mathsf{mpf}_{m-1,n}(1)$$

Summary of Paper

Formulas for the cardinalities of the following sets:

- $MPF_{n,n}(1)$
- $MPF_{2,n}(t)$
- $MPF_{n+k,n}(n-1)$ for k > 0.
- $MPF_{m,2}(1)$
- $MPF_{m,n}(m-2)$

Some Thoughts.

- What if only some spots have meters?
 - First *k* spots have a meter? Last *k* spots?
- What if the meter time isn't the same for every spot?
- Statistics on metered parking functions? Count runs, ascents, descents?
- Check out our open problems!

Figure: Link to the paper

Clown Functions?

From Parking Functions: Choose your own Adventure (Harris et. al),

Definition (Clown Functions)

Fix a positive integer d, and consider clowns filling into m cars, where each car can seat d clowns. Clowns enter the cars under the same standard parking rule, except for now we allow d clowns to enter the car. If the preference list $\alpha \in [n]^m$ results in all cars parking, then we say α is a **Clown Function of length** m, and we denote the set of clown functions as $\mathsf{CF}_m(d)$

Clown Functions?

From Parking Functions: Choose your own Adventure (Harris et. al),

Definition (Clown Functions)

Fix a positive integer d, and consider clowns filling into m cars, where each car can seat d clowns. Clowns enter the cars under the same standard parking rule, except for now we allow d clowns to enter the car. If the preference list $\alpha \in [n]^m$ results in all cars parking, then we say α is a **Clown Function of length** m, and we denote the set of clown functions as $\mathsf{CF}_m(d)$

Note: This is not the same as metered parking functions!

Example

- $(3,1,3) \in \mathsf{MPF}_{3,3}(1)$, and $(3,1,3) \notin \mathsf{CF}_3(1)$
- $(1,3,3) \notin MPF_{3,3}(2)$, and $(1,3,3) \in CF_3(2)$

