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1. Classical Parking Functions

Definition

An integer sequence a = (a1, . . . , an) is a parking function of length n iff
its non-decreasing rearrangement a(1) ≤ a(2) ≤ · · · ≤ a(n) satisfies
1 ≤ a(i) ≤ i for all i = 1, . . . , n.

Example: a = (2, 1, 4, 1)
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Vector Parking Functions [Stanley, Kung & Yan]

1 2 3 4

Another way to view Parking Functions a = (2, 1, 4, 1).
Want aσi ≤ weight on the i-th edge for some σ ∈ Sn.

Vector Parking Function: Given u = (u1, . . . , un) ∈ Z+ with
u1 ≤ u2 ≤ . . . ≤ un. Use ui as edge-weight.

u1 u2 u3 u4

u-parking functions are sequences (a1, . . . , an) ∈ Z+ such that a(i) ≤ ui .
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Graphical Parking Functions [Postnikov & Shapiro]

Let G be an undirected, connected, loopless multigraph with distinguished
root 0.
A G -parking function is a sequence (f1, . . . , fn) such that there is a way to
rearrange terms as fσ1 , . . . , fσn , and 1 ≤ fσi ≤ weight of the i-th edge.

Example: (5, 2, 3).
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⇒ 0

σ

f2 f3 f1

w2 w3 w1

σ = (0)231

w2 = 2 w3 = 3
w1 = 6

The edge weight on the i-th edge depends on G and σ:
wi = number of edges from σi to {0, σ1, . . . , σi−1}.
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Overlap between u- and G - Parking functions

Theorem ( Gaydarov & Hopkins)

If G is a graph such that PF(G ) is invariant under the action of Sn, then
one of the following cases holds:

(i) PF((a, a, . . . , a)) = PF(G ), where a ≥ 1 and G is an a-tree;

(ii) PF((a, a, . . . , a, 2a)) = PF(G ), where a ≥ 1 and G is an a-cycle;

(iii) PF((a, a+ b, a+ 2b, . . . , a+ (n − 1)b)) = PF(G ), where a, b, n ≥ 1

and G is equal to K a,b
n+1.

Otherwise, if PF(G ) is not invariant under the action of Sn, then there is
no u ∈ (Z+)n such that PF(G ) = PF(u).

0

a

0 0 b
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Parking functions in 2 dimension: first attempt

Let a = (a1, . . . , ap) and b = (b1, . . . , bq)

u1 u2 u3
v1

v2

v3

a(1) a(2) a(3)

b(1)

b(2)

b(3)

(a,b) is just two independent sequences, one inPF(u), the other in
PF(v).

Not very interesting!
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2-dimension: try again

a = (a1, . . . , ap) and b = (b1, . . . , bq).

U is the weights on the grid.
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Definition for 2-dim U-Parking Functions [Khare, Lorentz, & Y]

(a,b) is a 2-dim U-parking function if there exists a lattice path P from
(0, 0) to (p, q) whose edge-weights bound the order statistics of (a,b).
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An example

3
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(a,b) = (a1, a2; b1) is a parking function if any of the following happens:

Path : b1 ≤ 2 and (a(1), a(2)) ≤ (7, 12)

Path : b1 ≤ 5 and (a(1), a(2)) ≤ (3, 12)

Path : b1 ≤ 8 and (a(1), a(2)) ≤ (3, 9)

There are
(p+q

p

)
possible (upper) bounds.

2 7 12 3 5 12 3 9 8
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Overlap of G-PF and 2-dimensional U-PF: the main case

Joint work with Lauren Snider.

Theorem

Suppose U = {(ui ,j , vi ,j) : 0 ≤ i ≤ p, 0 ≤ j ≤ q} ⊂ N2 is given by( ui,j
vi,j

)
=

(
b c
c d

)(
i
j

)
+

(
a
e

)
with c ∈ Z+, a, b, d , e ∈ N, and at most one of a, e is 0, then

PF (2)
p,q(U) = PF(G ) where G = Kp+q+1 with vertex set [p + q]0 and

edge-weight function

wtG ({i , j}) =



a if i = 0 and j = 1, . . . , p;

b if 1 ≤ i < j ≤ p;

c if 1 ≤ i ≤ p and p + 1 ≤ j ≤ p + q;

d if p + 1 ≤ i < j ≤ p + q;

e if i = 0 and j = p + 1, . . . , p + q.
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Figure for the main case
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When b = d = 0, a = c = e = 1, this is the case of (p, q)-parking
functions introduced by Cori and Poulalhon (2002).
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Other cases I: independent (u, v)-PFs

Merge of GA, GB ∈ { a-trees, a-cycle, K a,b
n+1}, where GS is the induced

graph on 0 ∪ S .

GA

B

GA

0 0

B
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Other case II: special cycles

The graph is cycle-like.

0 0 0

Corresponding weight U :

2a

2a

All other weights are a.

a+ b

2b

2b

a+ b + c

a+ c

All other − weights are a and | weights are b.
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