
MATH 6404: Applied [Combinatorics and] Graph Theory CU Denver

Spring 2026 Instructor: Carlos Mart́ınez

Lecture 2: More on Graphs
Date: January 26, 2026 Scribe: Mark Johnson

1 Degree

1.1 Undirected Graphs

For an undirected graph G = (V,E), for each u ∈ V , deg(u) is the number of edges adjacent to it.
Formally,

deg(u) := |{e = {v, w} ∈ E : u ∈ e}|.
Note the following terminology:

• If deg(u) = 1, u is a leaf.

• If deg(u) = 0, u is isolated.

1.2 Directed Graphs

For a directed graph, there are two different notions of degree. The in-degree (out-degree) of u ∈ V
is the number of edges going into (out of) u. Formally,

deg−(u) := |{e = (v, w) ∈ E : w = u}|

and
deg+(u) := |{e = (v, w) ∈ E : v = u}|.

1.3 Examples

Consider the undirected graph in Figure 1. Then, we have
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Figure 1: An undirected graph.

• deg(1) = 1,

• deg(2) = 2, and

• deg(3) = 1.

Similarly, consider the directed graph in Figure 2. Then, we have

• deg−(1) = 0 and deg+(1) = 1,

• deg−(2) = 1 and deg+(2) = 1, and

• deg−(3) = 1 and deg+(3) = 0.
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Figure 2: A directed graph.

2 Subgraphs

Let G = (V (G), E(G)) and H = (V (H), E(H)). H is a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G).

3 Union of Graphs

The union of G = (V (G), E(G)) and H = (V (H), E(H)) is a graph W = (V (W ), E(W )) such that

• V (W ) = V (G) ∪ V (H) and

• E(W ) = E(G) ∪ E(H).

4 Paths

4.1 Undirected Graphs

A path is a graph P = (V (P ), E(P )) where V (P ) can be totally ordered such that two nodes are
adjacent in P only if they are adjacent in the order.

We can visualize this in Figure 3 and Figure 4.

1 2 3 4 5

Figure 3: A path.

a d w z f

Figure 4: Another path.

In the example, both graphs are paths. The graph in Figure 4 is a a path: to see this alge-
braically, we can map each node to N where a maps to 1, d maps to 2, w maps to 3, and so on. A
path can be expressed as:

• A sequence of nodes, such as v1, v2, . . . , vk.

• A sequence of edges, such as e1, e2, . . . , ek−1.

• A sequence of nodes and edges, such as v1, e1, v2, e2, . . . , vk, ek−1.
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Note that |E(P )| = |V (P )| − 1. If v1 = s and vk = t, we say P is an {s, t}−path. If P is an
{s, t}−path P , then

• deg(s) = 1,

• deg(t) = 1, and

• deg(u) = 2 for all u ∈ V (P ) with u ̸= s, t.

4.2 Directed Graphs

Directed paths have the same formal definition with the additional requirement that

ei = (vi, vi+1)

for all i ∈ [k − 1]. In other words, the head of an edge is the same as the tail of the subsequent
edge. Figure 5 shows a directed path.

a d w z f

Figure 5: A directed path.

Note that again |E(P )| = |V (P )| − 1. If P is an (s, t)-path, then

• deg−(s) = 0 and deg+(s) = 1,

• deg−(t) = 1 and deg+(t) = 0, and

• deg−(u) = deg+(u) = 1 for all u ∈ V (P ) with u ̸= s, t.

5 Cycles

5.1 Undirected Graphs

A cycle is a graph C = (V (C), E(C)) such that its nodes can be placed around a circle on the plane
with two nodes are adjacent on the circle if and only if they are adjacent in C. Figure 6 shows a
cycle.

Alternatively, a cycle C is a path for which we connect its endpoints with an edge. Note that
|E(C)| = |V (C)| and deg(u) = 2 for all u ∈ V (C).

5.2 Directed Graphs

Directed cycles have the same formal definition with the additional requirement of respecting di-
rectionality.

6 Connectivity

6.1 Undirected Graphs

Let G = (V,E) be an undirected graph. Two (unordered) nodes u, v ∈ V are connected if G
contains a {u, v}-path. The graph G is connected if all (unordered) pairs u, v ∈ V are connected.
Figure 7 shows a connected graph with multiple {u, v}-paths.
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Figure 6: A cycle.
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Figure 7: A connected graph.

6.2 Directed Graphs

For a directed graph G = (V,E), there are two notions of connectivity:

• G is weakly connected if its corresponding undirected graph is connected. For example, the
graph in Figure 5 is weakly connected.

• G is strongly connected if it contains a (u, v)-path for all ordered pairs u, v ∈ V .

7 Connected Components

7.1 Undirected Graphs

A connected component of a graph G = (V,E) is an inclusion-wise maximal connected subgraph
of G. Here, inclusion-wise maximal means there does not exist another other subgraph with the
same property (i.e., connectivity) that strictly contains it. For example, Figure 8 shows a graph
with three connected components, of sizes 4, 3, and 1 from left to right.
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Figure 8: A graph with three connected components.

7.2 Directed Graphs

A weakly connected component of a directed graph G = (V,E) is an inclusion-wise maximal weakly
connected subgraph of G. Similarly, a strongly connected component of G is an inclusion-wise
maximal strongly connected subgraph of G.
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