\documentclass[11pt]{article} \usepackage[margin=1in,headheight=24pt]{geometry} \usepackage{fancyhdr} \setlength{\headheight}{55pt} \usepackage{hyperref} \usepackage{tcolorbox} \usepackage{xcolor} \usepackage{amsfonts,amsmath,amssymb,amsthm} \usepackage{mathtools} \usepackage{subcaption} \usepackage{tikz} \usepackage{tikz-network} \newtheorem{theorem}{Theorem}[section] \newtheorem{axiom}[theorem]{Axiom} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{fact}[theorem]{Fact} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \definecolor{black}{RGB}{0,0,0} \definecolor{orange}{RGB}{230,159,0} \definecolor{skyblue}{RGB}{86,180,233} \definecolor{bluishgreen}{RGB}{0,158,115} \definecolor{yellow}{RGB}{240,228,66} \definecolor{blue}{RGB}{0,114,178} \definecolor{vermillion}{RGB}{213,94,0} \definecolor{reddishpurple}{RGB}{204,121,167} \definecolor{cugold}{RGB}{207,184,124} \pagestyle{plain} \fancypagestyle{firstpage}{ \fancyhf{} \renewcommand{\headrulewidth}{0pt} \fancyhead[c]{ \makebox[\textwidth][l]{\textbf{MATH 6404: Applied [Combinatorics and] Graph Theory} \hfill CU Denver} \\ \rule{\textwidth}{0.5pt} \\ \makebox[\textwidth][l]{Spring 2026 \hfill Instructor: Carlos Mart\'inez} } \fancyfoot[C]{\thepage} } \newcommand{\scribebox}[4]{ \begin{tcolorbox}[colback=cugold!40,colframe=black,left=6pt,right=6pt,top=10pt,bottom=10pt] \centering \textbf{Lecture #1:} #2 \\ \textbf{Date:} #3 \hfill \textbf{Scribe:} #4 \end{tcolorbox} } %%% -+-+-+-+-+-+- BEGIN HERE -+-+-+-+-+-+- %%% \newcommand{\lecturenumber}{$2$} \newcommand{\lecturetitle}{More on Graphs} %\newcommand{\scribename}{Carlos Mart\'inez} \newcommand{\scribename}{Mark Johnson} \newcommand{\lecturedate}{January 26, 2026} \begin{document} \thispagestyle{firstpage} \scribebox{\lecturenumber}{\lecturetitle}{\lecturedate}{\scribename} \section{Degree} \subsection{Undirected Graphs} For an undirected graph $G=(V,E)$, for each $u \in V$, $\textrm{deg}(u)$ is the number of edges adjacent to it. Formally, \begin{equation*} \textrm{deg}(u):=|\{e=\{v, w\}\in E : u \in e\}|. \end{equation*} Note the following terminology: \begin{itemize} \item If $\textrm{deg}(u)=1$, $u$ is a leaf. \item If $\textrm{deg}(u)=0$, $u$ is isolated. \end{itemize} \subsection{Directed Graphs} For a directed graph, there are two different notions of degree. The in-degree (out-degree) of $u \in V$ is the number of edges going into (out of) $u$. Formally, \begin{equation*} \textrm{deg}^{-}(u)\coloneqq |\{e = (v, w)\in E: w=u\}| \end{equation*} and \begin{equation*} \textrm{deg}^{+}(u)\coloneqq |\{e = (v, w)\in E: v=u\}|. \end{equation*} \subsection{Examples} Consider the undirected graph in Figure~\ref{fig: undirected}. \begin{figure}[ht] \centering \resizebox{0.333\linewidth}{!}{% \begin{tikzpicture} \Vertex[x=0,y=0,label=$1$]{1} \Vertex[x=-2,y=2,label=$2$]{2} \Vertex[x=2,y=2,label=$3$]{3} \Edge(1)(2) \Edge(2)(3) \end{tikzpicture} } \caption{An undirected graph.} \label{fig: undirected} \end{figure} Then, we have \begin{itemize} \item $\textrm{deg}(1) = 1$, \item $\textrm{deg}(2) = 2$, and \item $\textrm{deg}(3) = 1$. \end{itemize} Similarly, consider the directed graph in Figure~\ref{fig: directed}. \begin{figure}[ht] \centering \resizebox{0.333\linewidth}{!}{% \begin{tikzpicture} \Vertex[x=0,y=0,label=$1$]{1} \Vertex[x=-2,y=2,label=$2$]{2} \Vertex[x=2,y=2,label=$3$]{3} \Edge[Direct](1)(2) \Edge[Direct](2)(3) \end{tikzpicture} } \caption{A directed graph.} \label{fig: directed} \end{figure} Then, we have \begin{itemize} \item $\textrm{deg}^{-}(1)=0$ and $\textrm{deg}^{+}(1)=1$, \item $\textrm{deg}^{-}(2)=1$ and $\textrm{deg}^{+}(2)=1$, and \item $\textrm{deg}^{-}(3)=1$ and $\textrm{deg}^{+}(3)=0$. \end{itemize} \section{Subgraphs} Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$. $H$ is a subgraph of $G$ if $V(H)\subseteq V(G)$ and $E(H)\subseteq E(G)$. \section{Union of Graphs} The union of $G = (V(G), E(G))$ and $H = (V(H), E(H))$ is a graph $W = (V(W), E(W))$ such that \begin{itemize} \item $V(W)=V(G)\cup V(H)$ and \item $E(W)=E(G)\cup E(H)$. \end{itemize} \section{Paths} \subsection{Undirected Graphs} A path is a graph $P=(V(P), E(P))$ where $V(P)$ can be totally ordered such that two nodes are adjacent in $P$ only if they are adjacent in the order. We can visualize this in Figure~\ref{fig: a path} and Figure~\ref{fig: another path}. \begin{figure}[ht] \centering \resizebox{.5\linewidth}{!}{% \begin{tikzpicture} \Vertex[x=-4,y=0,label=$1$]{1} \Vertex[x=-2,y=0,label=$2$]{2} \Vertex[x=0,y=0,label=$3$]{3} \Vertex[x=2,y=0,label=$4$]{4} \Vertex[x=4,y=0,label=$5$]{5} \Edge(1)(2) \Edge(2)(3) \Edge(3)(4) \Edge(4)(5) \end{tikzpicture} } \caption{A path.} \label{fig: a path} \end{figure} \begin{figure}[ht] \centering \resizebox{.5\linewidth}{!}{% \begin{tikzpicture} \Vertex[x=-4,y=0,label=$a$]{1} \Vertex[x=-2,y=0,label=$d$]{2} \Vertex[x=0,y=0,label=$w$]{3} \Vertex[x=2,y=0,label=$z$]{4} \Vertex[x=4,y=0,label=$f$]{5} \Edge(1)(2) \Edge(2)(3) \Edge(3)(4) \Edge(4)(5) \end{tikzpicture} } \caption{Another path.} \label{fig: another path} \end{figure} In the example, both graphs are paths. The graph in Figure~\ref{fig: another path} is a a path: to see this algebraically, we can map each node to $\mathbb{N}$ where $a$ maps to $1$, $d$ maps to $2$, $w$ maps to $3$, and so on. A path can be expressed as: \begin{itemize} \item A sequence of nodes, such as $v_1, v_2, \ldots, v_k$. \item A sequence of edges, such as $e_1, e_2, \ldots, e_{k-1}$. \item A sequence of nodes and edges, such as $v_1,e_1,v_2,e_2, \ldots,v_k,e_{k-1}$. \end{itemize} Note that $|E(P)| = |V(P)| - 1$. If $v_1=s$ and $v_k=t$, we say $P$ is an $\{s, t\}-$path. If $P$ is an $\{s,t\}-$path $P$, then \begin{itemize} \item $\textrm{deg}(s) = 1$, \item $\textrm{deg}(t)=1$, and \item $\textrm{deg}(u) = 2$ for all $u \in V(P)$ with $u \neq s, t$. \end{itemize} \subsection{Directed Graphs} Directed paths have the same formal definition with the additional requirement that \begin{equation*} e_i=(v_i, v_{i+1}) \end{equation*} for all $i \in [k - 1]$. In other words, the head of an edge is the same as the tail of the subsequent edge. Figure~\ref{fig: a directed path} shows a directed path. \begin{figure}[ht] \centering \resizebox{.5\linewidth}{!}{% \begin{tikzpicture} \Vertex[x=-4,y=0,label=$a$]{1} \Vertex[x=-2,y=0,label=$d$]{2} \Vertex[x=0,y=0,label=$w$]{3} \Vertex[x=2,y=0,label=$z$]{4} \Vertex[x=4,y=0,label=$f$]{5} \Edge[Direct](1)(2) \Edge[Direct](2)(3) \Edge[Direct](3)(4) \Edge[Direct](4)(5) \end{tikzpicture} } \caption{A directed path.} \label{fig: a directed path} \end{figure} Note that again $|E(P)| = |V(P)| - 1$. If $P$ is an $(s,t)$-path, then \begin{itemize} \item $\textrm{deg}^{-}(s)=0$ and $\textrm{deg}^{+}(s)=1$, \item $\textrm{deg}^{-}(t)=1$ and $\textrm{deg}^{+}(t)=0$, and \item $\textrm{deg}^{-}(u) = \textrm{deg}^{+}(u)= 1$ for all $u \in V(P)$ with $u \neq s, t$. \end{itemize} \section{Cycles} \subsection{Undirected Graphs} A cycle is a graph $C=(V(C),E(C))$ such that its nodes can be placed around a circle on the plane with two nodes are adjacent on the circle if and only if they are adjacent in $C$. Figure~\ref{fig: a cycle} shows a cycle. \begin{figure}[ht] \centering \resizebox{.4\linewidth}{!}{% \begin{tikzpicture} \Vertex[x=-2,y=0,label=$a$]{1} \Vertex[x=2,y=0,label=$d$]{2} \Vertex[x=2,y=-2,label=$w$]{3} \Vertex[x=0,y=-4,label=$z$]{4} \Vertex[x=-2,y=-2,label=$f$]{5} \Edge(1)(2) \Edge(2)(3) \Edge(3)(4) \Edge(4)(5) \Edge(5)(1) \end{tikzpicture} } \caption{A cycle.} \label{fig: a cycle} \end{figure} Alternatively, a cycle $C$ is a path for which we connect its endpoints with an edge. Note that $|E(C)| = |V(C)|$ and $\textrm{deg}(u) = 2$ for all $u \in V(C)$. \subsection{Directed Graphs} Directed cycles have the same formal definition with the additional requirement of respecting directionality. \section{Connectivity} \subsection{Undirected Graphs} Let $G=(V,E)$ be an undirected graph. Two (unordered) nodes $u, v\in V$ are connected if $G$ contains a $\{u, v\}$-path. The graph $G$ is connected if all (unordered) pairs $u, v \in V$ are connected. Figure~\ref{fig: a connected graph} shows a connected graph with multiple $\{u,v\}$-paths. \begin{figure}[ht] \centering \resizebox{.4\linewidth}{!}{% \begin{tikzpicture} \Vertex[x=0,y=0]{1} \Vertex[x=2,y=-2,label=$v$]{2} \Vertex[x=1,y=-4]{3} \Vertex[x=-1,y=-4]{4} \Vertex[x=-2,y=-2,label=$u$]{5} \Edge(1)(2) \Edge(2)(3) \Edge(3)(4) \Edge(4)(5) \Edge(5)(1) \Edge(4)(1) \draw[red, very thick] (2) -- (3); \draw[red, very thick] (3) -- (4); \draw[red, very thick] (4) -- (5); \end{tikzpicture} } \caption{A connected graph.} \label{fig: a connected graph} \end{figure} \subsection{Directed Graphs} For a directed graph $G = (V,E)$, there are two notions of connectivity: \begin{itemize} \item $G$ is weakly connected if its corresponding undirected graph is connected. For example, the graph in Figure~\ref{fig: a directed path} is weakly connected. \item $G$ is strongly connected if it contains a $(u,v)$-path for all ordered pairs $u, v \in V$. \end{itemize} \section{Connected Components} \subsection{Undirected Graphs} A connected component of a graph $G = (V, E)$ is an inclusion-wise maximal connected subgraph of $G$. Here, inclusion-wise maximal means there does not exist another other subgraph with the same property (i.e., connectivity) that strictly contains it. For example, Figure~\ref{fig: a graph with three connected components} shows a graph with three connected components, of sizes $4$, $3$, and $1$ from left to right. \begin{figure}[ht] \centering \tikzset{ VertexStyle/.style={draw,circle,fill=blue!25, minimum size=7mm, inner sep=0pt}, EdgeStyle/.style={thick} } \begin{tikzpicture}[scale=0.8] \Vertex[x=0, y=0]{1} \Vertex[x=2, y=-2]{2} \Vertex[x=0, y=-4]{3} \Vertex[x=-2, y=-2]{4} \Edge(1)(2) \Edge(2)(3) \Edge(3)(4) \Edge(4)(1) \Edge(3)(1) \Vertex[x=6, y=0]{5} \Vertex[x=8, y=-2]{6} \Vertex[x=6, y=-4]{7} \Edge(5)(6) \Edge(7)(5) \Vertex[x=12, y=0]{8} \end{tikzpicture} \caption{A graph with three connected components.} \label{fig: a graph with three connected components} \end{figure} \subsection{Directed Graphs} A weakly connected component of a directed graph $G = (V,E)$ is an inclusion-wise maximal weakly connected subgraph of $G$. Similarly, a strongly connected component of $G$ is an inclusion-wise maximal strongly connected subgraph of $G$. \end{document}